Abstract
Background
The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) caused by Clostridium perfringens.
Methods
The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) on the immune function and gut microbiota of broilers with NE. A total of 288 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two concentrations of dietary MCE supplementation (0 or 350 mg/kg of diet) and two disease challenge statuses (control or NE).
Results
The results revealed that NE significantly increased the feed conversion rate (FCR), mortality, intestinal lesion score, the levels of IL-1β, IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa, mRNA levels of TLR2, IFN-γ and pIgR in the jejunum, and Clostridium perfringens concentrations in the cecum. NE significantly decreased the body weight (BW), body weight gain (BWG), jejunal villus height, V/C, mRNA level of AMPK-α1 in jejunum, IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum. MCE significantly increased BW, BWG, jejunal villus height, V/C, mRNA levels of occludin, ZO-1 and AMPK-α1 in the jejunum, the levels of IgA and IgG in serum and IL-10 in the jejunal mucosa and mRNA levels of NF-κB, IL-10 and MHC-II in the jejunum. Additionally, MCE significantly decreased the FCR, mortality, intestinal lesion score, jejunal crypt depth, the levels of IFN-γ and IL-17 in serum and IL-17/IL-10 in the jejunal mucosa, Clostridium perfringens concentrations in the cecum, and mRNA levels of IL-17/IL-10 in the jejunum. Moreover, NE significantly increased the abundance of bacteria that are associated with inflammation, obesity and depression (Alistipes, Barnesiella, Intestinimonas, RF39 and UCG-005) and significantly decreased the abundance of short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Butyricicoccus and Bacteroides) in the cecum. MCE significantly increased the abundance of SCFA-producing bacteria (Streptococcus, Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group) and significantly reduced the abundance of bacteria that are associated with inflammation and obesity (Alistipes, Barnesiella and UCG-010) in the cecum. In the cecum of broilers with NE, the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower. Interestingly, these trends were reversed by the addition of MCE to the diet. Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance, whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects.
Conclusions
MCE ameliorated the loss of growth performance in broiler chickens with NE, probably by regulating the intestinal barrier, immune function, and gut microbiota.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Taian, China (GRID:grid.440622.6) (ISNI:0000 0000 9482 4676)
2 Yantai University, Center for Mitochondria and Healthy Ageing, College of Life Sciences, Yantai, China (GRID:grid.440761.0) (ISNI:0000 0000 9030 0162)
3 Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Taian, China (GRID:grid.440622.6) (ISNI:0000 0000 9482 4676); University of Liège, Precision Livestock and Nutrition Unit, Gembloux Agro-Bio TechGembloux, Belgium (GRID:grid.4861.b) (ISNI:0000 0001 0805 7253)
4 Phytobiotics (Jiangsu) Biotech Co., Ltd., Jintan, China (GRID:grid.4861.b)





