Abstract
Separate processes for shape setting and polishing of Nitinol workpieces are well investigated in scientific literature and adopted industrially. However, a simultaneous process for shape setting and polishing of Nitinol has not yet been reported. In this study, preliminary results of such process are presented, providing insights and directions for further research on post-processing shape memory materials. For this purpose, Nitinol wire samples with phase transformation temperatures Af = 4.5 °C, Af = 31 °C and Af = 61 °C were plasma electrolytic polished (PEP) while fitted in a specially designed sample holder at three electrolyte temperatures te = 50 °C, te = 65 °C and te = 80 °C. The PEP process duration was τPEP = 60 s, τPEP = 180 s and τPEP = 300 s. After the PEP processes, the samples were investigated for the shape memory effect (SME). The training effect, known to be present in shape memory alloys (SMA), was taken into account. The surface roughness of the investigated wires was measured before and after the PEP process. The obtained results demonstrate that both a phase transformation temperature and an electrolyte temperature have a strong effect on polishing and shape setting results.
Article highlights
Plasma electrolytic polishing enables coupling the shape setting step of Nitinol with simultaneous polishing;
Austenitic and martensitic Nitinol responds differently to the same PEP conditions;
Partial shape memory effect was observed in NiTi samples that underwent the shape setting step coupled with the PEP process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Technical University Bergakademie Freiberg, Institute for Machine Elements, Design and Manufacturing, Chair for Additive Manufacturing, Freiberg, Germany (GRID:grid.6862.a) (ISNI:0000 0001 0805 5610); Beckmann Institute for Technology Development e.V., Chemnitz, Germany (GRID:grid.6862.a)
2 Beckmann Institute for Technology Development e.V., Chemnitz, Germany (GRID:grid.6862.a)





