Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dandelion has received wide attention in food and medicine fields due to its excellent antioxidant properties. Nonetheless, the underlying mechanism of this action has not yet been fully clarified, particularly at the metabolic level. Herein, the effects of dandelion extract (DE) on H2O2-induced oxidative damage was investigated. The results indicate that the DE alleviated H2O2-induced cell damage (increased by 14.5% compared to H2O2 group), reduced the reactive oxygen species (ROS) level (decreased by 80.1% compared to H2O2 group), maintained the mitochondrial membrane potential (MMP) level, and increased antioxidant-related enzyme activities. Importantly, the metabolic response of PC12 cells indicates that H2O2 disturbed phospholipid metabolism and damaged cell membrane integrity. In addition, energy metabolism, the central nervous system, and the antioxidant-related metabolism pathway were perturbed. In contrast, DE rescued the H2O2-induced metabolic disorder and further alleviated oxidative damage. Collectively, these findings provide valuable stepping stones for a discussion of the mechanism and show the promise of DE as a suitable additive for functional food products.

Details

Title
Dandelion (Taraxacum mongolicum) Extract Alleviated H2O2-Induced Oxidative Damage: The Underlying Mechanism Revealed by Metabolomics and Lipidomics
Author
Chen, Yannan 1 ; Fei, Siyuan 1 ; Yu, Xiaoting 1 ; Tan, Mingqian 1   VIAFID ORCID Logo 

 Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Gangjingzi District, Dalian 116034, China; [email protected] (Y.C.); [email protected] (S.F.); [email protected] (X.Y.); National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China 
First page
3314
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862241070
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.