Full text

Turn on search term navigation

© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lidar, a technology at the heart of autonomous driving and robotic mobility, performs 3D imaging of a complex scene by measuring the time of flight of returning light pulses. Many technological challenges, including enhancement of the observation field of view (FoV), acceleration of the imaging frame rate, improvement of the ambiguity range, reduction of fabrication cost, and component size, must be simultaneously addressed so that lidar technology reaches the performance needed to strongly impact the global market. We propose an innovative solution to address the problem of wide FoV and extended unambiguous range using an acousto-optic modulator that rapidly scans a large-area metasurface deflector. We further exploit a multiplexing illumination technique traditionally deployed in the context of telecommunication theory to extend the ambiguity range and to drastically improve the signal-to-noise ratio of the measured signal. Compacting our metasurface-scanning lidar system to chip-scale dimension would open new and exciting perspectives, eventually relevant to the autonomous vehicles and robotic industries.

Details

Title
Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar
Author
Marinov, Emil; Renato Juliano Martins; Mohamed Aziz Ben Youssef; Kyrou, Christina; Pierre-Marie Coulon; Genevet, Patrice
First page
46005
Section
Research Articles
Publication year
2023
Publication date
Jul 2023
Publisher
S P I E - International Society for
ISSN
25775421
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862388946
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.