Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Power quality is one of the most important aspects of the power system, especially in the distribution system. This system can be affected by such disturbances as short-term voltage sags/swells, long-term voltage increases/decreases over the normative limits, harmonic distortion, interruptions, etc. Maintaining the electricity quality parameters in accordance with the applicable standards in the power distribution system will require the use of additional devices. The scientific literature on the subject indicates a very wide range of different topologies of AC voltage compensators. In this paper, different power electronics-based AC voltage compensator topologies are reviewed that are typically used with distribution energy systems. A summary of the properties and functionalities of the selected topologies has been presented. This review focuses mainly on the different topologies of the Unified Power Quality Controllers (UPQC) and Hybrid Transformers (HT). This review is divided into several sections. The first section presents the topologies used in UPQC and HT. The second section discusses selected control methods for these systems. The third section presents the basic properties of the systems related to compensating changes in the supply voltage and improvement of power quality. The fourth section presents the use of UPQC and HT systems. Finally, a summary and conclusions are presented.

Details

Title
A Review on AC Voltage Variation Compensators in Low Voltage Distribution Network
Author
Sztajmec, Elżbieta 1   VIAFID ORCID Logo  ; Szcześniak, Paweł 2   VIAFID ORCID Logo 

 Departament of Power Electronics and Power Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland; [email protected] 
 Institute of Automatic Control Electronics and Electrical Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland 
First page
6293
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862578286
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.