Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

1,4-Oxathiins are valued for a breadth of bioactivities and are known commercial fungicides. This article explores a novel preparation of 2,3,6-trisubstituted 1,4-oxathiin-S,S-dioxides via the reaction of benzyl 1-alkynyl sulfones and aryl aldehydes under basic conditions. A total of 20 examples possessing exclusively a trans arrangement of the 2,3-diaryl substituents are exhibited; the products demonstrate a variation of functional groups on the aryl ring attached to the heterocyclic ring system. The preparation is hindered by the base sensitivity of the products, and a ring-opened by-product typically contaminates the reaction mixture. A DFT assessment of the overall system includes a lithium counterion and offers possible pathways for the incorporation of the aldehyde, the cyclization step and the requisite proton transfers. In addition, the DFT work reveals options for the ring opening chemistry. It appears the trans 2,3-diaryl selectivity is set during the cyclization stage of the reaction sequence. The practical work uncovers a new reaction pathway to create a family of novel 1,4-oxathiin-S,S-dioxides whereas the computational work offers an understanding of the structures and possible mechanisms involved.

Details

Title
The Synthesis and Base-Induced Breakdown of Triaryl 1,4-Oxathiins—An Experimental and DFT Study
Author
Nicol, Eric A  VIAFID ORCID Logo  ; Sing, Matthew; Luu, Lilly U; Remigio, Erwin J; Mills, Michelle B; Schwan, Adrian L  VIAFID ORCID Logo 
First page
6180
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862729671
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.