It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Control of excitons in transition metal dichalcogenides (TMDCs) and their heterostructures is fundamentally interesting for tailoring light-matter interactions and exploring their potential applications in high-efficiency optoelectronic and nonlinear photonic devices. While both intra- and interlayer excitons in TMDCs have been heavily studied, their behavior in the quantum tunneling regime, in which the TMDC or its heterostructure is optically excited and concurrently serves as a tunnel junction barrier, remains unexplored. Here, using the degree of freedom of a metallic probe in an atomic force microscope, we investigated both intralayer and interlayer excitons dynamics in TMDC heterobilayers via locally controlled junction current in a finely tuned sub-nanometer tip-sample cavity. Our tip-enhanced photoluminescence measurements reveal a significantly different exciton-quantum plasmon coupling for intralayer and interlayer excitons due to different orientation of the dipoles of the respective e-h pairs. Using a steady-state rate equation fit, we extracted field gradients, radiative and nonradiative relaxation rates for excitons in the quantum tunneling regime with and without junction current. Our results show that tip-induced radiative (nonradiative) relaxation of intralayer (interlayer) excitons becomes dominant in the quantum tunneling regime due to the Purcell effect. These findings have important implications for near-field probing of excitonic materials in the strong-coupling regime.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 University of Pennsylvania, Department of Electrical and Systems Engineering, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972)
2 University of Pennsylvania, Department of Electrical and Systems Engineering, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972); Chungbuk National University, Department of Engineering Chemistry, Chungbuk, Republic of Korea (GRID:grid.254229.a) (ISNI:0000 0000 9611 0917)
3 Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Department of Chemistry, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X)