It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Environmental changes are expected to intensify in the future. The invasion of toxic plants under environmental changes may change herbivore feeding environments. Herbivores living long-term in toxic plant-feeding environments will inevitably ingest plant secondary metabolites (PSMs), and under different feeding environments are likely to have unique protection mechanisms that support improved adaptation to PSMs in their habitat. We aimed to compare different subterranean herbivore population responses and adaptations to toxic plants to unveil their feeding challenges.
Results
Here, we investigated the adaptive capacity of the liver in two geographically separated populations of plateau zokors (Eospalax baileyi) before and after exposure to the toxic plant Stellera chamaejasme (SC), at the organ, biochemical, and transcriptomic levels. The results showed no significant liver granules or inflammatory reactions in the Tianzhu (TZ) population after the SC treatment. The transaminase level in the TZ population was significantly lower than that in the Luqu population. Transcriptome analysis revealed that the TZ population exhibited interactions with other detoxification metabolic pathways by oxytocin pathway-associated genes, including diacylglycerol lipase alpha (Dagla), calcium/calmodulin dependent protein kinase II Alpha (Camk2a), and CD38 molecule (Cd38). The phase II process of liver drug metabolism increased to promote the rate of metabolism. We found that alternative splicing (AS) and the expression of the cyclin D (Ccnd1) gene interact—a TZ population hallmark—reduced liver inflammatory responses.
Conclusion
Our study supports the detoxification limitation hypothesis that differences in liver detoxification metabolism gene expression and AS are potential factors in herbivore adaptation to PSMs and may be a strategy of different herbivore populations to improve toxic plant adaptability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer