It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The interface zone, area around invasive carcinoma, can be thought of as the actual tissue of the tumor microenvironment with precedent alterations for tumor invasion. However, the heterogeneity and characteristics of the microenvironment in the interface area have not yet been thoroughly explored.
Methods
For in vitro studies, single-cell RNA sequencing (scRNA-seq) was used to characterize the cells from the tumor zone, the normal zone and the interface zone with 5-mm-wide belts between the tumor invasion front and the normal zone. Through scRNA-seq data analysis, we compared the cell types and their transcriptional characteristics in the different zones. Pseudotime, cell–cell communication and pathway analysis were performed to characterize the zone-specific microenvironment. Cell proliferation, wound healing and clone formation experiments explored the function of differentially expressed gene BMPR1B, which were confirmed by tumor models in vivo.
Results
After screening, 88,548 high-quality cells were obtained and identified. Regulatory T cells, M2 macrophages, angiogenesis-related mast cells, stem cells with weak DNA repair ability, endothelial cells with angiogenic activity, fibroblasts with collagen synthesis and epithelial cells with proliferative activity form a unique tumorigenic microenvironment in the interface zone. Cell–cell communication analysis revealed that there are special ligand–receptor pairs between different cell types in the interface zone, which protects endothelial cell apoptosis and promotes epithelial cell proliferation and migration, compared to the normal zone. Compared with the normal zone, the highly expressed BMPR1B gene promotes the tumorigenic ability of cancer cells in the interface zone.
Conclusions
Our work identified a unique tumorigenic microenvironment of the interface zone and allowed for deeper insights into the tumor microenvironment of breast cancer that will serve as a helpful resource for advancing breast cancer diagnosis and therapy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer