It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Backgorund
While various endometrial biomarkers have been characterized at the transcriptomic and functional level, there is generally a poor overlap among studies, making it unclear to what extent their upstream regulators (e.g., ovarian hormones, transcription factors (TFs) and microRNAs (miRNAs)) realistically contribute to menstrual cycle progression and function. Unmasking the intricacies of the molecular interactions in the endometrium from a novel systemic point of view will help gain a more accurate perspective of endometrial regulation and a better explanation the molecular etiology of endometrial-factor infertility.
Methods
An in-silico analysis was carried out to identify which regulators consistently target the gene biomarkers proposed in studies related to endometrial progression and implantation failure (19 gene lists/signatures were included). The roles of these regulators, and of genes related to progesterone and estrogens, were then analysed in transcriptomic datasets compiled from samples collected throughout the menstrual cycle (n = 129), and the expression of selected TFs were prospectively validated in an independent cohort of healthy participants (n = 19).
Results
A total of 3,608 distinct genes from the 19 gene lists were associated with endometrial progression and implantation failure. The lists’ regulation was significantly favoured by TFs (89% (17/19) of gene lists) and progesterone (47% (8 /19) of gene lists), rather than miRNAs (5% (1/19) of gene lists) or estrogen (0% (0/19) of gene lists), respectively (FDR < 0.05). Exceptionally, two gene lists that were previously associated with implantation failure and unexplained infertility were less hormone-dependent, but primarily regulated by estrogen. Although endometrial progression genes were mainly targeted by hormones rather than non-hormonal contributors (odds ratio = 91.94, FDR < 0.05), we identified 311 TFs and 595 miRNAs not previously associated with ovarian hormones. We highlight CTCF, GATA6, hsa-miR-15a-5p, hsa-miR-218-5p, hsa-miR-107, hsa-miR-103a-3p, and hsa-miR-128-3p, as overlapping novel master regulators of endometrial function. The gene expression changes of selected regulators throughout the menstrual cycle (FDR < 0.05), dually validated in-silico and through endometrial biopsies, corroborated their potential regulatory roles in the endometrium.
Conclusions
This study revealed novel hormonal and non-hormonal regulators and their relative contributions to endometrial progression and pathology, providing new leads for the potential causes of endometrial-factor infertility.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer