Abstract
Nanoprecipitation is one of the most popular methods for producing polymer nanoparticles. However, the reported results show a large variability. In order to provide a first-hand comparative study, we prepared cellulose-based nanoparticles via different nanoprecipitation methods. Here, the influence of the coagulating solvents acetone, N,N-dimethylacetamide and tetrahydrofuran on the size and shape of the particles via precipitation using dialysis was investigated. The influence of temperature and concentration was determined by dropwise addition of the coagulation medium. Then, via rapid solvent shifting, particles were prepared from cellulose acetates with different molecular masses and the cellulose acetate propionate and cellulose acetate butyrate derivatives in the concentration range of 1–20 mg mL− 1. Thereby, it was possible to prepare spherical particles in the range from 43 to 158 nm. Furthermore, the impact of the molecular weight of these derivatives on the obtained particle size distributions was determined. It is possible to obtain pure regenerated cellulose particles in the nanometer range by a deacetylation of the derivatives. In addition, the findings were used to directly convert cellulose from a DMAc/LiCl solvent system into regenerated cellulose nanoparticles with a size of 10 ± 3 nm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Technical University of Munich, Chair for Biogenic Polymers, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966)





