It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Although the classification method based on the deep neural network has achieved excellent results in classification tasks, it is difficult to apply to real-time scenarios because of high memory footprints and prohibitive inference times. Compared to unstructured pruning, structured pruning techniques can reduce the computation cost of the model runtime more effectively, but inevitably reduces the precision of the model. Traditional methods use fine tuning to restore model damage performance. However, there is still a large gap between the pruned model and the original one. In this paper, we use progressive multi-level distillation learning to compensate for the loss caused by pruning. Pre-pruning and post-pruning networks serve as the teacher and student networks. The proposed approach utilizes the complementary properties of structured pruning and knowledge distillation, which allows the pruned network to learn the intermediate and output representations of the teacher network, thus reducing the influence of the model subject to pruning. Experiments demonstrate that our approach performs better on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets with different pruning rates. For instance, GoogLeNet can achieve near lossless pruning on the CIFAR-10 dataset with 60% pruning. Moreover, this paper also proves that using the proposed distillation learning method during the pruning process achieves more significant performance gains than after completing the pruning.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Anhui Agricultural University, School of Information and Computer, Hefei, China (GRID:grid.411389.6) (ISNI:0000 0004 1760 4804)
2 Anhui Agricultural University, School of Information and Computer, Hefei, China (GRID:grid.411389.6) (ISNI:0000 0004 1760 4804); Anhui Agriculture University, Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Hefei, China (GRID:grid.411389.6) (ISNI:0000 0004 1760 4804)