It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The ecological significance of secondary metabolites is to improve the adaptive ability of plants. Secondary metabolites, usually medicinal ingredients, are triggered by unsuitable environment, thus the quality of medicinal materials under adversity being better. The quality of the cultivated was heavily declined due to its good conditions. Radix Saposhnikoviae, the dried root of Saposhnikovia divaricata (Turcz.) Schischk., is one of the most common botanicals in Asian countries, now basically comes from cultivation, resulting in the market price being only 1/10 to 1/3 of its wild counterpart, so improving the quality of cultivated Radix Saposhnikoviae is of urgency. Nitric oxide (NO) plays a crucial role in generating reactive oxygen species and modifying the secondary metabolism of plants. This study aims to enhance the quality of cultivated Radix Saposhnikoviae by supplementing exogenous NO. To achieve this, sodium nitroprusside (SNP) was utilized as an NO provider and applied to fresh roots of S. divaricata at concentrations of 0.03, 0.1, 0.5, and 1.0 mmol/L. This study measured parameters including the activities of antioxidant enzymes, secondary metabolite synthesis enzymes such as phenylalanine ammonia-lyase (PAL), 1-aminocyclopropane-1-carboxylic acid (ACC), and chalcone synthase (CHS), as well as the contents of NO, superoxide radicals (O2·−), hydrogen peroxide (H2O2), malondialdehyde (MDA), and four secondary metabolites. The quality of Radix Saposhnikoviae was evaluated with antipyretic, analgesic, anti-inflammatory effects, and inflammatory factors. As a result, the NO contents in the fresh roots were significantly increased under SNP, which led to a significant increase of O2·−, H2O2, and MDA. The activities of important antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were found to increase as well, with their peak levels observed on the 2nd and 3rd days. PAL, ACC, and CHS activities were also significantly enhanced, resulting in the increased secondary metabolite contents of Radix saposhnikoviae in all groups, especially the 0.5 mmol/L SNP. The four active ingredients, prim-O-glucosylcimifugin, cimifugin, 4′-O-β-d-glucosyl-5-O-methylvisamminol, and sec-O-glucosylhamaudol, increased by 88.3%,325.0%, 55.4%, and 283.8%, respectively, on the 3rd day. The pharmaceutical effects of Radix Saposhnikoviae under 0.5 mmol/L SNP were significantly enhanced. Exogenous SNP can induce the physiological response of S. divaricata under adverse conditions and significantly improve the quality of Radix Saposhnikoviae.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Heilongjiang University of Chinese Medicine, College of Pharmacy, Harbin, China (GRID:grid.412068.9) (ISNI:0000 0004 1759 8782)
2 Shenyang Pharmaceutical University, Shenyang, China (GRID:grid.412561.5) (ISNI:0000 0000 8645 4345)