Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Obesity-induced insulin resistance is among the key factors in the development of type 2 diabetes, atherogenic dyslipidemia and cardiovascular disease. Adipose tissue plays a key role in the regulation of whole-body metabolism and insulin sensitivity. In obesity, adipose tissue becomes inflamed and dysfunctional, exhibiting a modified biochemical signature and adipokine secretion pattern that promotes insulin resistance in peripheral tissues. An important hallmark of dysfunctional obese adipose tissue is impaired NAD+/sirtuin signaling. In this chapter, we summarize the evidence for impairment of the NAD+/sirtuin pathway in obesity, not only in white adipose tissue but also in brown adipose tissue and during the process of beiging, together with correlative evidence from human studies. We also describe the role of PARPs and CD38 as important NAD+ consumers and discuss findings from experimental studies that investigated potential NAD+ boosting strategies and their efficacy in restoring impaired NAD+ metabolism in dysfunctional obese adipose tissue. In sum, these studies suggest a critical role of NAD+ metabolism in adipose biology and provide a basis for the potential development of strategies to restore metabolic health in obesity.

Details

Title
The Role of NAD+ in Metabolic Regulation of Adipose Tissue: Implications for Obesity-Induced Insulin Resistance
Author
Ruskovska, Tatjana 1   VIAFID ORCID Logo  ; Bernlohr, David A 2 

 Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; [email protected] 
 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA 
First page
2560
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869264775
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.