Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photocatalysts based on graphitic carbon nitride (g-C3N4) attracted considerable attention due to their efficiency in hydrogen production and decomposition of organic pollutants in aqueous solutions. In this work, a new approach to synthesis of g-C3N4-based heterostructures with improved photocatalytic properties was proposed. The properties of two different CdZnS/g-C3N4 and ZnIn2S4/g-C3N4 heterostructures synthesized and studied in the same conditions were compared. Pure g-C3N4 photocatalysts as well as CdZnS/g-C3N4 and ZnIn2S4/g-C3N4 heterostructures were synthesized using a one-pot method by calcining the mixture of the initial components. Photocatalytic properties of the synthesized substances were evaluated in a model reaction of rhodamine B decomposition induced by visible light. It was shown that ultrasonic treatment in the presence of a nonionic surfactant enhances the photocatalytic activity of g-C3N4 structures as a result of a higher photocatalyst dispersity. The electronic structures of the CdZnS/g-C3N4 and ZnIn2S4/g-C3N4 heterostructures were analyzed in detail. The photocatalytic activity of heterostructures was found to be 2–3-fold higher as compared with an unmodified g-C3N4 due to formation of a type II heterojunction and Z-scheme structures. Decomposition of rhodamine B occurred mostly via formation of active oxygen radicals by irradiation.

Details

Title
Photocatalytic Materials Based on g-C3N4 Obtained by the One-Pot Calcination Method
Author
Shamilov, Radik R 1   VIAFID ORCID Logo  ; Muzipov, Zufar M 1 ; Sagdeev, Dmitriy O 1   VIAFID ORCID Logo  ; Kholin, Kirill V 1   VIAFID ORCID Logo  ; Saifina, Alina F 2 ; Gubaidullin, Aidar T 2   VIAFID ORCID Logo  ; Galyametdinov, Yuriy G 1 

 Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia 
 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia 
First page
85
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23115629
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869309262
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.