Full Text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The research for efficient organic materials organized in bulk heterojunction (BHJ) thin films for organic photovoltaics (OPVs) has shown a significant breakthrough in the past decade. Desired structural organization can be attained through various strategies. In this regard, the current review highlights tuning of alkyl chains introduced on molecular structures of active materials. The recent wide literature is classified based on the introduction of alkyl chains on polymers and small molecules used as donor and acceptor materials. The design of these materials, the morphological aspects of the active layers, and the performances of the related photovoltaic cells are detailed. A comprehensive discussion on chemical structures of the different material families considered, their modification by alkyl chains of various natures, and the morphological aspects are reported and tabulated.

Details

Title
Impact of Alkyl-Based Side Chains in Conjugated Materials for Bulk Heterojunction Organic Photovoltaic Cells—A Review
Author
Kathleen Isabelle Moineau-Chane Ching 1   VIAFID ORCID Logo 

 CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France; [email protected]; LCC-CNRS, Université de Toulouse, CNRS, INPT, UPS, CEDEX 4, 31077 Toulouse, France 
First page
6639
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869337831
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.