Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this article, a deep reinforcement learning-based path-following control scheme is established for an under-actuated autonomous marine vehicle (AMV) in the presence of model uncertainties and unknown marine environment disturbances is presented. By virtue of light-of-sight guidance, a surge-heading joint guidance method is developed within the kinematic level, thereby enabling the AMV to follow the desired path accurately. Within the dynamic level, model uncertainties and time-varying environment disturbances are taken into account, and the reinforcement learning control method using the twin-delay deep deterministic policy gradient (TD3) is developed for the under-actuated vehicle, where path-following actions are generated via the state space and hybrid rewards. Additionally, actor-critic networks are developed using the long-short time memory (LSTM) network, and the vehicle can successfully make a decision by the aid of historical states, thus enhancing the convergence rate of dynamic controllers. Simulation results and comprehensive comparisons on a prototype AMV demonstrate the remarkable effectiveness and superiority of the proposed LSTM-TD3-based path-following control scheme.

Details

Title
A Deep Reinforcement Learning-Based Path-Following Control Scheme for an Uncertain Under-Actuated Autonomous Marine Vehicle
Author
Qu, Xingru  VIAFID ORCID Logo  ; Jiang, Yuze; Zhang, Rubo; Long, Feifei
First page
1762
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869437725
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.