Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A predefined-time adaptive fuzzy cooperative controller with event triggering is proposed for multi-robot systems that takes into account external disturbances, input saturation, and model uncertainties in this paper. First, based on the asymmetric tan-type barrier Lyapunov function, a predefined-time controller is proposed to acquire a quick response and more precise convergence time under the directed communication topology. Second, predefined-time fuzzy logic systems are developed to approximate external disturbances and model uncertainties. Third, a dynamic relative threshold event-triggered mechanism is improved to save the communication resources of the robots. Subsequently, the proof procedure for the predefined-time stability is given using the Lyapunov stability theorem. Finally, some simulation examples, including a comparative experi-ment on multi-robot systems, are provided to test the effectiveness of the above algorithm.

Details

Title
Adaptive Fuzzy Event-Triggered Cooperative Control for Multi-Robot Systems: A Predefined-Time Strategy
Author
Tian, Xuehong 1   VIAFID ORCID Logo  ; Huang, Xin 1 ; Liu, Haitao 1   VIAFID ORCID Logo  ; Qingqun Mai 1 

 Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; [email protected] (X.T.); [email protected] (Q.M.); School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China 
First page
7950
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869634069
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.