It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Developing an optical geometric lens system in a conventional way involves substantial effort from designers to devise and assess the lens specifications. An expeditious and effortless acquisition of lens parameters satisfying the desired lens performance requirements can ease the workload by avoiding complex lens design process. In this study, we adopted the Glow, a generative flow model, which utilizes latent Gaussian variables to effectively tackle the issues of one-to-many mapping and information loss caused by dimensional disparities between high-dimensional lens structure parameters and low-dimensional performance metrics. We developed two lenses to tailor the vertical field of view and magnify the horizontal coverage range using two Glow-based invertible neural networks (INNs). By directly inputting the specified lens performance metrics into the proposed INNs, optimal inverse-designed lens specifications can be obtained efficiently with superb precision. The implementation of Glow-assisted INN approach is anticipated to significantly streamline the optical lens design workflows.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Kwangwoon University, Department of Electronic Engineering, Seoul, Republic of Korea (GRID:grid.411202.4) (ISNI:0000 0004 0533 0009)