It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Forward continuation, balance, and sit-to-stand-and-walk (STSW) are three common movement strategies during sit-to-walk (STW) executions. Literature identifies these strategies through biomechanical parameters using gold standard laboratory equipment, which is expensive, bulky, and requires significant post-processing. STW strategy becomes apparent at gait-initiation (GI) and the hip/knee are primary contributors in STW, therefore, this study proposes to use the hip/knee joint angles at GI as an alternate method of strategy classification. To achieve this, K-means clustering was implemented using three clusters corresponding to the three STW strategies; and two feature sets corresponding to the hip/knee angles (derived from motion capture data); from an open access online database (age: 21–80 years; n = 10). The results identified forward continuation with the lowest hip/knee extension, followed by balance and then STSW, at GI. Using this classification, strategy biomechanics were investigated by deriving the established biomechanical quantities from literature. The biomechanical parameters that significantly varied between strategies (P < 0.05) were time, horizontal centre of mass (COM) momentum, braking impulse, centre of pressure (COP) range and velocities, COP–COM separation, hip/knee torque and movement fluency. This alternate method of strategy classification forms a generalized framework for describing STW executions and is consistent with literature, thus validating the joint angle classification method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Monash University, School of Engineering, Subang Jaya, Malaysia (GRID:grid.440425.3) (ISNI:0000 0004 1798 0746)
2 Universiti Putra Malaysia, Malaysian Research Institute on Ageing, Serdang, Malaysia (GRID:grid.11142.37) (ISNI:0000 0001 2231 800X)