Abstract
The study on the nonlinear optical responses arising from plasmonic nanoantennas, known as nonlinear plasmonics, has been massively investigated in recent years. Among the most basic nonlinear optical responses, second-harmonic generation (SHG) and multiphoton photoluminescence (MPL), two-photon photoluminescence in particular, has aroused extensive interests, due to their distinct properties of being ultrasensitive to the spatial symmetry and ultrafast response time of hot electrons. In this review, we give insights into fundamental roles dominating the radiations of such nonlinear optical processes and their recent research advances. Different from other reviews on nonlinear plasmonics, which mainly focused on parametric processes, this review pays equal attentions to the incoherent process of MPL. An in-depth description on the excitation and emission processes of MPL in accordance with recent studies is fully presented. By using the high ‘symmetry rule’ of SHG and ultrafast response time of MPL, advanced applications in surface enhanced spectroscopy, ultra-sensitive photodetector, biosensor and ultrafast laser pulses are highlighted in the end.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Zhang, Lei 2 ; Qiu, Min 2 1 Hangzhou Dianzi University, Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672)
2 Westlake University, Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Hangzhou, China (GRID:grid.494629.4) (ISNI:0000 0004 8008 9315); Westlake Institute for Advanced Study, Institute of Advanced Technology, Hangzhou, China (GRID:grid.511490.8)




