Sweet cherry (Prunus avium L.) is an economic fruit tree of the Prunus genus in the Roaceae family (Vignati et al. 2022). It is popular with consumers because of its early ripening in open-field, bright color, and rich nutrition. Since the 80’s, sweet cherry industry in our country has developed rapidly. At present, the production, planting area and import of sweet cherry are ranked first in the world, which is known as ‘gold planting industry’ (Zhang et al. 2020).
However, the occurrence of cherry crinkle leaf disease restricts the development of the industry. In recent years, cherry crinkle leaf disease (CCL) has been found in Shandong, Gansu and Beijing (Wang et al. 2012; 2014). CCL is mainly characterized by rough leaf surface, light color, irregular or narrow leaf edge. Fruit abortion is serious, a small number of fruits can develop and mature, but the fruit is small, deformed, with delayed maturity (Kinman 1930). In orchards with mild manifestations, the severity of CCL varied from year to year, and the location of CCL was not fixed (Helton 1962). CCL was once considered a viral disease, but grafting failed to transmit it (Kerr et al. 1956; Kerr 1963; Kinman et al. 1951; Wang et al. 2012). Classical genetic hybridization experiments have proved that CCL is a genetic disease controlled by recessive genes (Kerr 1963). It mainly occurs on sweet cherry varieties such as ‘Black Tartarian’, ‘Bing’, ‘Black Republican’ and ‘Hongdeng’ (Kinman et al. 1951; Aticinsos et al. 1959; Wang et al. 2012). CCL seriously affects the yield of cherry orchards. So, it is necessary to study the molecular markers of CCL disease, screen the existing breeding parents, to assist sweet cherry breeding.
In order to develop molecular marker of CCL, the F1 population of ‘Rainier × 21–21’ was used. The maternal parent ‘Rainier’ is a variety developed jointly by the Washington State Agricultural Experiment Station and the United States Department of Agriculture. Its parents are ‘Bing’ and ‘Van’. The paternal parent ‘21–21’ is a sweet cherry superiors cultivated by the Cherry Research Group of Beijing Academy of Agriculture and Forestry Sciences, which is self-crossed from ‘Stella’. No symptoms of CCL were found on ‘Rainier’ and ‘21–21’. This family had 257 individuals including 77 with CCL. CCL seedlings showed irregular leaf edge, uneven color, deep crack or rough surface, most with dwarfing symptoms (Fig. 1A, B). The ratio of CCL and normal seedling was 1:2.36 conformed to the 1:3 by Chi-square test. Perhaps, ‘Rainer’ and ‘21–21’ were both carriers of CCL. A total of 12 mixing pools were formed from leaf genomic DNA of 48 normal and 48 CCL respectively. 368 SSRs were used to detect stable difference between normal and CCL pools. In the 368 SSRs, 253 obtained the expected amplification products, accounting for 68.8%. Among them, 15 SSRs were polymorphic between the normal and the CCL pools, accounting for 5.9% of the effectively amplified SSRs. The 15 SSRs were tested by 96 individuals who made up the mixed pool. And only the genotype of Prc123 was stably correlated with the phenotype.
Fig. 1 [Images not available. See PDF.]
A Leaf symptom of CCL. B Whole seedling symptom of CCL. C The amplification result of Prc123 in 96 hybrids by using primer sequence (5 '- 3') of Prc123-F: ACCGTTTCAGCGAGAGA and Prc123-R: GCAAACCAAGCTCAGAAAG. D Distribution of three genotypes of Prc123 in normal and CCL individuals
Prc123 amplified two bands in sweet cherry genome, named Prc123-A and Prc123-B respectively. There were three combinations of Prc123-A and Prc123-B, namely AA, AB and BB (Fig. 1C). In normal individuals, 19 genotypes were AA, 26 were AB, and 3 were BB. Among individuals with CCL, 35 genotypes were BB and 13 were AB (Fig. 1D). Therefore, AA and AB were the main genotypes in normal individuals, and BB was the main genotype in individuals with CCL. Using Prc123 to predict the CCL, 100% Prc123-AA should be normal, 33.3% Prc123-AB genotype should be CCL and 92.1% Prc123-BB should be CCL.
In addition, 25 cultivars of sweet cherry were surveyed for genotype of Prc123, and 24 cultivars had clear amplification results. Among them, 11 cultivars were Prc123-AA, including ‘Mingzhu’, ‘Космическая’, ‘Дилемма’, ‘Van’, ‘Tieton’, ‘Caihong’, ‘PyσИНОВаЯРаННЯЯ’, ‘Zaodan’, ‘Summit’, ‘Wanhongzhu’ and ‘Sunburst’, which hadn’t been reported CCL in field. 13 cultivars were Prc123-AB type, including ‘Juhong’, ‘Rainier’, ‘Lapins’, ‘Caixia’, ‘Hongdeng’, ‘Hedelfinger’, ‘Valerij Cskalov’, ‘Burlat’, ‘Hongyan’, ‘Zaolu’, ‘Hongmi’, ‘Крупноплодная’ and ‘21–21’, in which 5 cultivars was detected CCL in field, including ‘Hedelfinger’, ‘Hongdeng’, ‘Valerij Cskalov’, ‘Hongyan’ and ‘Hongmi’. The proportion of CCL actually occurring was consistent with the proportion predicted by Prc123-AB.
To sum up, this study obtained a molecular marker of CCL, Prc123 and identified genotypes of Prc123 in 24 sweet cherry main cultivars, which can be used in preventing the CCL from spreading and molecular assisted breeding for non-CCL cultivars.
Acknowledgements
Not applicable.
Authors’ contributions
KZ and JW conceived the research, JW, XZ, GY, YZ, and XD performed experiments, CW and XZ analyzed data, and JW wrote a manuscript. The author(s) read and approved the final manuscript.
Funding
Open access funding provided by Shanghai Jiao Tong University. This study was supported by Beijing New-star Plan of Science and Technology (2010B025), the Promotion and Innovation of Beijing Academy of Agriculture and Forestry Sciences (KJCX201910), the technological innovation ability project of Beijing Academy of Agriculture and Forestry Sciences (KJCX20210403).
Availability of data and materials
The datasets used during the current study are available from the corresponding author upon reasonable request.
Declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Aticinsos J, Ciiamderlaei N, Hunter J. Cherry variegation in New Zealand. New Zeal J Agr Res. 1959;2:938–44.
Helton, A. Symptom stability in sweet cherry trees affected by crinkle leaf and deep suture. Plant Disease Report; 1962; 46, pp. 325-7.
Kerr, E. Inheritance of crinkle, variegation and albinism in sweet cherry. Can J Bot; 1963; 41, pp. 1395-404. [DOI: https://dx.doi.org/10.1139/b63-122]
Kerr, E; Dicicsok, G; Willison, R. The nature of certain leaf abnormalities in sweet cherry. Agri Inst Revi; 1956; 11,
Kinman, CF. Study of some unproductive cherry trees in California. Agric Res; 1930; 41, pp. 327-35.
Kinman, CF; Hewitt, WB; Lott, TB; Philp, GL; Reeves, EL; Willison, RS; Zeller, SM. Viruslike disease not proved transmissible: sweet cherry crinkle leaf. U S Dept Agr Handbook; 1951; 10, pp. 195-205.
Vignati, E; Lipska, M; Dunwell, JM; Caccamo, M; Simkin, AJ. Fruit development in sweet cherry. Plants; 2022; 11,
Wang, J; Lu, Y; Zhang, X; Yan, G; Zhou, Y; Zhang, K. Incidence of sweet cherry crinkle leaf disease in Beijing and its influence to fruit production and quality. J Agricultural Sci Technol (Beijing); 2012; 14,
Wang, W; Zong, X; Wei, H; Wang, J; Zhu, D; Tan, Y; Liu, Q. Virus detection of the crinkle leaf disease in sweet cherry trees on different rootstocks. J Fruit Sci; 2014; 31,
Zhang, X; Wang, X; Xing, S; Ma, Y; Wang, X. Multi-sensors enabled dynamic monitoring and quality assessment system (DMQAS) of sweet cherry in express logistics. Foods; 2020; 9,
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Among individuals with CCL, 35 genotypes were BB and 13 were AB (Fig. 1D). [...]AA and AB were the main genotypes in normal individuals, and BB was the main genotype in individuals with CCL. [...]this study obtained a molecular marker of CCL, Prc123 and identified genotypes of Prc123 in 24 sweet cherry main cultivars, which can be used in preventing the CCL from spreading and molecular assisted breeding for non-CCL cultivars. Availability of data and materials The datasets used during the current study are available from the corresponding author upon reasonable request.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China (GRID:grid.418260.9) (ISNI:0000 0004 0646 9053); Cherry Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, P. R. China (GRID:grid.454880.5) (ISNI:0000 0004 0596 3180); Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing, China (GRID:grid.418524.e) (ISNI:0000 0004 0369 6250); Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China (GRID:grid.418524.e)