It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI’s exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.
MonCI, a flavin-dependent monooxygenase, transforms all three C = C groups in the polyene substrate into epoxides during monensin A biosynthesis. Here, the authors present the structural basis for this enzyme’s regio- and stereoselective epoxidation activity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 The University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, USA (GRID:grid.267324.6) (ISNI:0000 0001 0668 0420)
2 Northwest University, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Xi’an, China (GRID:grid.412262.1) (ISNI:0000 0004 1761 5538)
3 SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771)
4 The University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, USA (GRID:grid.267324.6) (ISNI:0000 0001 0668 0420); University of Illinois Urbana-Champaign, Department of Biochemistry, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991)