Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid growth of the Internet of Things (IoT) in smart buildings necessitates the continuous evaluation of potential threats and their implications. Conventional methods are increasingly inadequate in measuring risk and mitigating associated hazards, necessitating the development of innovative approaches. Cybersecurity systems for IoT are critical not only in Building Management System (BMS) applications but also in various aspects of daily life. Distributed Denial of Service (DDoS) attacks targeting core BMS software, particularly those launched by botnets, pose significant risks to assets and safety. In this paper, we propose a novel algorithm that combines the power of the Slime Mould Optimization Algorithm (SMOA) for feature selection with an Artificial Neural Network (ANN) predictor and the Support Vector Machine (SVM) algorithm. Our enhanced algorithm achieves an outstanding accuracy of 97.44% in estimating DDoS attack risk factors in the context of BMS. Additionally, it showcases a remarkable 99.19% accuracy in predicting DDoS attacks, effectively preventing system disruptions, and managing cyber threats. To further validate our work, we perform a comparative analysis using the K-Nearest Neighbor Classifier (KNN), which yields an accuracy rate of 96.46%. Our model is trained on the Canadian Institute for Cybersecurity (CIC) IoT Dataset 2022, enabling behavioral analysis and vulnerability testing on diverse IoT devices utilizing various protocols, such as IEEE 802.11, Zigbee-based, and Z-Wave.

Details

Title
Predicting DDoS Attacks Using Machine Learning Algorithms in Building Management Systems
Author
Avcı, İsa 1   VIAFID ORCID Logo  ; Koca, Murat 2   VIAFID ORCID Logo 

 Department of Computer Engineering, Faculty of Engineering, Karabuk University, Kilavuzlar Mahallesi 413, Sokak No. 7, Merkez, Karabuk 78000, Turkey 
 Department of Computer Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Kampüs, Tuşba, Van 65080, Turkey; [email protected] 
First page
4142
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876427401
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.