Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A theoretical analysis of the potential inhibition of human sucrase-isomaltase (SI) by flavonoids was carried out with the aim of identifying potential candidates for an alternative treatment of type 2 diabetes. Two compounds from maize silks, maysin and luteolin, were selected to be studied with the structure-based density functional theory (DFT), molecular docking (MDock), and molecular dynamics (MD) approaches. The docking score and MD simulations suggested that the compounds maysin and luteolin presented higher binding affinities in N-terminal sucrase-isomaltase (NtSI) than in C-terminal sucrase-isomaltase (CtSI). The reactivity parameters, such as chemical hardness (η) and chemical potential (µ), of the ligands, as well as of the active site amino acids of the NtSI, were calculated by the meta-GGA M06 functional in combination with the 6-31G(d) basis set. The lower value of chemical hardness calculated for the maysin molecule indicated that this might interact more easily with the active site of NtSI, in comparison with the values of the acarbose and luteolin structures. Additionally, a possible oxidative process was proposed through the quantum chemical calculations of the electronic charge transfer values (∆N) between the active site amino acids of the NtSI and the ligands. In addition, maysin displayed a higher ability to generate more oxidative damage in the NtSI active site. Our results suggest that maysin and luteolin can be used to develop novel α-glucosidase inhibitors via NtSI inhibition.

Details

Title
Theoretical Studies for the Discovery of Potential Sucrase-Isomaltase Inhibitors from Maize Silk Phytochemicals: An Approach to Treatment of Type 2 Diabetes
Author
Landeros-Martínez, Linda-Lucila; Campos-Almazán, Mara Ibeth  VIAFID ORCID Logo  ; Sánchez-Bojorge, Nora-Aydeé; Flores, Raul  VIAFID ORCID Logo  ; Juan Pedro Palomares-Báez; Rodríguez-Valdez, Luz María  VIAFID ORCID Logo 
First page
6778
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876628536
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.