Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ground-level ozone (O3) is a well-known atmospheric pollutant aside from particulate matter. China as a global populous country is facing serious surface O3 pollution. To detect the complex spatiotemporal transformation of the population exposure to ambient O3 pollution in China from 2005 to 2019, the Bayesian multi-stage spatiotemporal evolution hierarchy model was employed. To insight the drivers of the population exposure to ambient O3 pollution in China, a Bayesian spatiotemporal LASSO regression model (BST-LASSO-RM) and a spatiotemporal propensity score matching (STPSM) were firstly applied; then, a spatiotemporal causal inference method integrating the BST-LASSO-RM and STPSM was presented. The results show that the spatial pattern of the annual population-weighted ground-level O3 (PWGLO3) concentrations, representing population exposure to ambient O3, in China has transformed since 2014. Most regions (72.2%) experienced a decreasing trend in PWGLO3 pollution in the early stage, but in the late stage, most areas (79.3%) underwent an increasing trend. Some drivers on PWGLO3 concentrations have partial spatial spillover effects. The PWGLO3 concentrations in a region can be driven by this region’s surrounding areas’ economic factors, wind speed, and PWGLO3 concentrations. The major drivers with six local factors in 2005–2014 changed to five local factors and one spatial adjacent factor in 2015–2019. The driving of the traffic and green factors have no spatial spillover effects. Three traffic factors showed a negative driving effect in the early stage, but only one, bus ridership per capita (BRPC), retains the negative driving effect in the late stage. The factor with the maximum driving contribution is BRPC in the early stage, but PM2.5 pollution in the late stage, and the corresponding driving contribution is 17.57%. Green area per capita and urban green coverage rates have positive driving effects. The driving effects of the climate factors intensified from the early to the later stage.

Details

Title
Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method
Author
Li, Junming 1   VIAFID ORCID Logo  ; Xue, Jing 1 ; Wei, Jing 2   VIAFID ORCID Logo  ; Ren, Zhoupeng 3   VIAFID ORCID Logo  ; Yu, Yiming 1 ; An, Huize 1 ; Yang, Xingyan 1 ; Yang, Yixue 1 

 School of Statistics, Shanxi University of Finance and Economics, 696 Wucheng Road, Taiyuan 030006, China 
 Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA; [email protected] 
 State Key Laboratory of Resources and Environmental Information System (LREIS), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100045, China; [email protected] 
First page
4871
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876632994
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.