Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were applied to study the inhibitory effect of N-acetylcysteine (NAC) on corrosion inhibition of carbon steel in hydrochloric acid solution. N-acetylcysteine influenced the iron dissolution to a greater extent than the hydrogen evolution reaction acting as a mixed inhibitor, predominantly anodic. The charge transfer resistance (Rct) gradually increased with the inhibitor concentration. From both methods, the inhibition efficiency (IE) reached a value of 89 ± 1% and NAC adsorption followed the Temkin isotherm. The value of adsorption Gibbs energy (ΔGadso), around −35 kJ mol−1, indicated a spontaneous adsorption and mixed action mechanism, with NAC chemical adsorption prevailing over physical one. New data will be reported by the computational study, that was performed using the density functional theory (DFT) method in aqueous phase. Quantum chemical descriptors were determined by B3LYP theory level with 6–31G+(d) basis set. Metropolis Monte Carlo atomistic simulation was used to reveal the adsorption configuration and interactions between acetylcysteine molecules and the carbon steel surface. Theoretical results were consistent with the experimental data, showing that the inhibitor action mechanism consisted of mainly chemisorption of its molecules on the carbon steel surface accompanied by van der Waals forces and electrostatic interactions.

Details

Title
Experimental and Computational Study on Inhibitory Effect and Adsorption Properties of N-Acetylcysteine Amino Acid in Acid Environment
Author
Samide, Adriana 1 ; Dobriţescu, Aurelian 1 ; Tigae, Cristian 1 ; Spînu, Cezar Ionuţ 1 ; Oprea, Bogdan 2 

 Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea Bucuresti, 200478 Craiova, Romania; [email protected] (C.T.); [email protected] (C.I.S.) 
 Faculty of Medicine, University of Medicine and Pharmacy, Petru Rares, 2, 200349 Craiova, Romania; [email protected] 
First page
6799
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876721463
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.