Abstract

Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA–DNA origami structures to pave way for next-generation cargo protection and targeting strategies.

DNA and RNA origami nanostructures direct the size, shape and topology of different virus capsids in a user-defined manner while shielding encapsulated origamis from degradation.

Details

Title
DNA-origami-directed virus capsid polymorphism
Author
Seitz, Iris 1   VIAFID ORCID Logo  ; Saarinen, Sharon 1 ; Kumpula, Esa-Pekka 2   VIAFID ORCID Logo  ; McNeale, Donna 3   VIAFID ORCID Logo  ; Anaya-Plaza, Eduardo 1 ; Lampinen, Vili 4   VIAFID ORCID Logo  ; Hytönen, Vesa P. 4 ; Sainsbury, Frank 3   VIAFID ORCID Logo  ; Cornelissen, Jeroen J. L. M. 5   VIAFID ORCID Logo  ; Linko, Veikko 6   VIAFID ORCID Logo  ; Huiskonen, Juha T. 2   VIAFID ORCID Logo  ; Kostiainen, Mauri A. 7   VIAFID ORCID Logo 

 Aalto University, Department of Bioproducts and Biosystems, Aalto, Finland (GRID:grid.5373.2) (ISNI:0000 0001 0838 9418) 
 University of Helsinki, Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, Helsinki, Finland (GRID:grid.7737.4) (ISNI:0000 0004 0410 2071) 
 Griffith University, Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Nathan, Australia (GRID:grid.1022.1) (ISNI:0000 0004 0437 5432) 
 Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland (GRID:grid.502801.e) (ISNI:0000 0001 2314 6254) 
 University of Twente, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Enschede, Netherlands (GRID:grid.6214.1) (ISNI:0000 0004 0399 8953) 
 Aalto University, Department of Bioproducts and Biosystems, Aalto, Finland (GRID:grid.5373.2) (ISNI:0000 0001 0838 9418); Aalto University, LIBER Center of Excellence, Aalto, Finland (GRID:grid.5373.2) (ISNI:0000 0001 0838 9418); University of Tartu, Institute of Technology, Tartu, Estonia (GRID:grid.10939.32) (ISNI:0000 0001 0943 7661) 
 Aalto University, Department of Bioproducts and Biosystems, Aalto, Finland (GRID:grid.5373.2) (ISNI:0000 0001 0838 9418); Aalto University, LIBER Center of Excellence, Aalto, Finland (GRID:grid.5373.2) (ISNI:0000 0001 0838 9418) 
Pages
1205-1212
Publication year
2023
Publication date
Oct 2023
Publisher
Nature Publishing Group
ISSN
17483387
e-ISSN
17483395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876796517
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.