It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Rift margins provide insights into the processes governing the rupture of the continental lithosphere and the subsequence formation of sedimentary basins. The Proterozoic basement underlying Somaliland has been affected by multiple rifting; however, the crustal structure of these rifted basins remains unknown. This study utilized teleseismic receiver function analysis, Bayesian inversion, common conversion point imaging and 2D forward gravity modelling to examine the crust and upper mantle of Somaliland. The results indicate 36.8–38.2 km of crust in southern Somaliland, while the central and northern regions feature thinned crust (~ 21 km) with 5–6 km thick sediments. The joint analysis of radial and transverse components of receiver functions and shear wave splitting revealed fast axis directions trending to 50–56° in the upper mantle, indicating that azimuthal anisotropy is oriented in the regional Africa-Arabia plate motion. Such orientation may have resulted from lattice preferred orientation of olivine from the asthenospheric flow. Additionally, the fast polarization of the crust in central Somaliland is oriented at − 15°, indicating fossil deformation in the thinned crust related to the NW–SE trending Late Jurassic rift event. Further, the fast polarization for stations near the Gulf of Aden is oriented at 75–80°, suggesting crustal deformation associated with the Oligocene rift event. The crustal anisotropy at southern Somaliland revealed fast polarization oriented at − 85°, indicating a preserved far-field response of the WNW-ESE trending Late Cretaceous rift event. Overall, the study provides for the first-time insight into the rift-related extensional strain fabric in the crust and upper mantle anisotropy induced by asthenospheric flow in Somaliland.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Khalifa University of Science and Technology, Department of Earth Sciences, Abu Dhabi, UAE (GRID:grid.440568.b) (ISNI:0000 0004 1762 9729)
2 University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, UK (GRID:grid.6572.6) (ISNI:0000 0004 1936 7486)
3 Goethe University Frankfurt, Institute of Geosciences, Frankfurt, Germany (GRID:grid.7839.5) (ISNI:0000 0004 1936 9721)