It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis.
Methods
In this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation.
Conclusion
The proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer