It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Though articular cartilage stem cell (ACSC)-based therapies have been demonstrated to be a promising option in the treatment of diseased joints, the wide variety of cell isolation, the unknown therapeutic targets, and the incomplete understanding of the interactions of ACSCs with diseased microenvironments have limited the applications of ACSCs.
Methods
In this study, the human ACSCs have been isolated from osteoarthritic articular cartilage by advantage of selection of anatomical location, the migratory property of the cells, and the combination of traumatic injury, mechanical stimuli and enzymatic digestion. The protective effects of ACSC infusion into osteoarthritis (OA) rat knees on osteochondral tissues were evaluated using micro-CT and pathological analyses. Moreover, the regulation of ACSCs on osteoarthritic osteoclasts and the underlying mechanisms in vivo and in vitro were explored by RNA-sequencing, pathological analyses and functional gain and loss experiments. The one-way ANOVA was used in multiple group data analysis.
Results
The ACSCs showed typical stem cell-like characteristics including colony formation and committed osteo-chondrogenic capacity. In addition, intra-articular injection into knee joints yielded significant improvement on the abnormal subchondral bone remodeling of osteoarthritic rats. Bioinformatic and functional analysis showed that ACSCs suppressed osteoarthritic osteoclasts formation, and inflammatory joint microenvironment augmented the inhibitory effects. Further explorations demonstrated that ACSC-derived tumor necrosis factor alpha-induced protein 3 (TNFAIP3) remarkably contributed to the inhibition on osteoarhtritic osteoclasts and the improvement of abnormal subchondral bone remodeling.
Conclusion
In summary, we have reported an easy and reproducible human ACSC isolation strategy and revealed their effects on subchondral bone remodeling in OA rats by releasing TNFAIP3 and suppressing osteoclasts in a diseased microenvironment responsive manner.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer