It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The magnetic coupler is the most vital component for charging EV wirelessly. Through it, the output power can be transported from the transmitter to the receiver by means of electromagnetic fields. Therefore, this manuscript presents a proposed design of a magnetic coupler in the form of Double-D (DD) on both sides, which is suitable for in-motion inductive charging. This charger is capable of transferring power of 200-kW through an airgap of 250 mm with an efficiency of 91.88% and an operating frequency of 85 kHz. Computational modeling is conducted to obtain the magnetic coupler and the compensation parameters of the proposed system. The appropriate dimensions of the coils, magnetic and metallic shielding are obtained by using the finite element model (FEM). The effect of misalignments on the self and mutual inductances of the two coils (Lp, Ls, M), the output power (Po), and the transmission efficiency (η) is studied in case of one and two coils at transmitter side. The output power in the distance between the two transmitter coils (d) is improved by controlling the operating frequency, adding magnetizable concrete (MC), or both together. These techniques have proven effectiveness in improving the output power by 45.15% for small d and 72.51% for large d. In addition, the efficiency improved by 15.95% for small d and 60.76% for large d. Moreover, these improvement cases were compared in terms of size, weight and cost for a 100-m driving track.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Zagazig University, Electrical Power and Machines Department, Faculty of Engineering, Zagazig, Egypt (GRID:grid.31451.32) (ISNI:0000 0001 2158 2757)
2 Eaton Corporate, Eaton Research Labs, Golden, USA (GRID:grid.31451.32)