Content area

Abstract

The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code will be made public upon acceptance of the paper.

Details

1009240
Title
Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Aug 30, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-09-02
Milestone dates
2023-10-18 (Submission v1); 2023-10-27 (Submission v2); 2023-11-17 (Submission v3); 2024-08-30 (Submission v4)
Publication history
 
 
   First posting date
02 Sep 2024
ProQuest document ID
2880592903
Document URL
https://www.proquest.com/working-papers/tailoring-adversarial-attacks-on-deep-neural/docview/2880592903/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-09-03
Database
ProQuest One Academic