Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Gaussian-radial-basis function neural network (GRBFNN) has been a popular choice for interpolation and classification. However, it is computationally intensive when the dimension of the input vector is high. To address this issue, we propose a new feedforward network-separable Gaussian neural network (SGNN) by taking advantage of the separable property of Gaussian-radial-basis functions, which splits input data into multiple columns and sequentially feeds them into parallel layers formed by uni-variate Gaussian functions. This structure reduces the number of neurons from O(Nd) of GRBFNN to O(dN), which exponentially improves the computational speed of SGNN and makes it scale linearly as the input dimension increases. In addition, SGNN can preserve the dominant subspace of the Hessian matrix of GRBFNN in gradient descent training, leading to a similar level of accuracy to GRBFNN. It is experimentally demonstrated that SGNN can achieve an acceleration of 100 times with a similar level of accuracy over GRBFNN on tri-variate function approximations. The SGNN also has better trainability and is more tuning-friendly than DNNs with RuLU and Sigmoid functions. For approximating functions with a complex geometry, SGNN can lead to results that are three orders of magnitude more accurate than those of a RuLU-DNN with twice the number of layers and the number of neurons per layer.

Details

Title
Separable Gaussian Neural Networks: Structure, Analysis, and Function Approximations
Author
Xing, Siyuan 1   VIAFID ORCID Logo  ; Jian-Qiao, Sun 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA; [email protected] 
 Department of Mechanical Engineering, School of Engineering, University of California Merced, Merced, CA 95343, USA 
First page
453
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882263930
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.