Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hypoxia-induced retinal neovascularization is a leading cause of blindness worldwide. Oxygen-induced retinopathy (OIR) mouse, a well-established angiogenesis model, has been extensively used to evaluate the effect of anti-angiogenic agents through intravitreal injection. Here, we serendipitously found that the needles used for intravitreal injection caused an unexpected “anti-angiogenic” effect in the OIR mice. To evaluate the effects of various intravitreal puncture sizes on retinal neovascularization and explore the potential underlying mechanism, intravitreal punctures using 0.5 mm (25 G), 0.3 mm (30 G), or 0.21 mm (33 G) needles were performed in OIR mice. Compared with 0.3 mm and 0.21 mm puncture, the 0.5 mm puncture remarkably suppressed the formation of pathological angiogenesis, inhibited vascular leakage, and remodeled the retinal vasculature. Mechanistically, the 0.5 mm puncture induced a substantial reduction in intraocular pressure (IOP), leading to an improvement in oxygen partial pressure (pO2) and significant reduction in Hif1a expression, resulting in resolution of angiogenic and inflammatory responses. Furthermore, IOP-lowering drugs, Travatan or Azarga, also promoted the alleviation of hypoxia and exhibited a potent anti-angiogenesis efficacy. Our study revealed an acute and significant reduction in IOP caused by a large puncture, which could remarkably suppress HIF-1α-mediated retinal neovascularization, indicating that lowering IOP may be a promising therapeutic avenue for treating retinal neovascular diseases.

Details

Title
HIF-1α Reduction by Lowering Intraocular Pressure Alleviated Retinal Neovascularization
Author
Yang, Ziqi 1 ; Ni, Biyan 1 ; Zhou, Tian 1   VIAFID ORCID Logo  ; Huang, Zijing 2   VIAFID ORCID Logo  ; Zhou, Hong 1 ; Zhou, Yang 1 ; Lin, Shiya 1 ; Chang, He 1   VIAFID ORCID Logo  ; Liu, Xialin 1 

 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; [email protected] (Z.Y.); [email protected] (B.N.); [email protected] (T.Z.); [email protected] (Z.H.); [email protected] (H.Z.); [email protected] (Y.Z.); [email protected] (S.L.) 
 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; [email protected] (Z.Y.); [email protected] (B.N.); [email protected] (T.Z.); [email protected] (Z.H.); [email protected] (H.Z.); [email protected] (Y.Z.); [email protected] (S.L.); Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China 
First page
1532
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882313858
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.