Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Steam superheaters experience various defects that can affect the system’s operation differently. Maintaining a constant temperature and pressure of the steam at the turbine input is crucial for optimal steam turbine running conditions. This is achieved by regulating the steam temperature in the superheater, which is divided into three parts with devices mounted at each connection point to allow for the injection of condensates to cool the steam. The steam pressure is controlled by adjusting the fuel flow command. However, controlling the output temperature can be challenging because of the transfer time delay between the points where the water is sprayed and the points where the steam temperature is measured. To address this challenge, a temperature control system was developed and tested in three different environments using an electronic simulator, the block-oriented simulation hardware BORIS, data acquisition board dSpace, and a MATLAB R2020a Simulink with a PI controller model. These simulations allowed for the study of the superheater’s function in both normal and fault conditions, with the possibility of controlling the system structure and detecting faults through the proper implementation of weighting matrices.

Details

Title
Application of the Residue Method in Steam Superheater Fault Detection
Author
Maican, Camelia Adela; Rădulescu, Virginia Maria  VIAFID ORCID Logo  ; Pană, Cristina Floriana  VIAFID ORCID Logo 
First page
11476
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882387749
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.