Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Both single infrared and visible images have respective limitations. Fusion technology has been developed to conquer these restrictions. It is designed to generate a fused image with infrared information and texture details. Most traditional fusion methods use hand-designed fusion strategies, but some are too rough and have limited fusion performance. Recently, some researchers have proposed fusion methods based on deep learning, but some early fusion networks cannot adaptively fuse images due to unreasonable design. Therefore, we propose a mask and cross-dynamic fusion-based network called MCDFN. This network adaptively preserves the salient features of infrared images and the texture details of visible images through an end-to-end fusion process. Specifically, we designed a two-stage fusion network. In the first stage, we train the autoencoder network so that the encoder and decoder learn feature extraction and reconstruction capabilities. In the second stage, the autoencoder is fixed, and we employ a fusion strategy combining mask and cross-dynamic fusion to train the entire fusion network. This strategy is conducive to the adaptive fusion of image information between infrared images and visible images in multiple dimensions. On the public TNO dataset and the RoadScene dataset, we selected nine different fusion methods to compare with our proposed method. Experimental results show that our proposed fusion method achieves good results on both datasets.

Details

Title
Infrared and Visible Image Fusion Based on Mask and Cross-Dynamic Fusion
Author
Fu, Qiang; Fu, Hanxiang  VIAFID ORCID Logo  ; Wu, Yuezhou
First page
4342
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882562882
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.