Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1–42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer’s disease patients. Aβ(25–35) is the shortest peptide that retains the toxicity of Aβ(1–42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1–42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1–42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1–42). The formation of His6/Aβ(1–42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1–42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1–42) and Aβ(25–35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.

Details

Title
Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1–42) Molecular Mechanisms of Action
Author
Salazar, Jairo 1 ; Samhan-Arias, Alejandro K 2   VIAFID ORCID Logo  ; Gutierrez-Merino, Carlos 3   VIAFID ORCID Logo 

 Departamento de Química, Universidad Nacional Autónoma de Nicaragua-León, León 21000, Nicaragua 
 Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C\Arzobispo Morcillo 4, 28029 Madrid, Spain; [email protected]; Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), C\Arturo Duperier 4, 28029 Madrid, Spain 
 Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain 
First page
7138
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882603748
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.