It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Prostate cancer (PCa) patients with lymph node involvement (LNI) constitute a single-risk group with varied prognoses. Existing studies on this group have focused solely on those who underwent prostatectomy (RP), using statistical models to predict prognosis. This study aimed to develop an easily accessible individual survival prediction tool based on multiple machine learning (ML) algorithms to predict survival probability for PCa patients with LNI. A total of 3280 PCa patients with LNI were identified from the Surveillance, Epidemiology, and End Results (SEER) database, covering the years 2000–2019. The primary endpoint was overall survival (OS). Gradient Boosting Survival Analysis (GBSA), Random Survival Forest (RSF), and Extra Survival Trees (EST) were used to develop prognosis models, which were compared to Cox regression. Discrimination was evaluated using the time-dependent areas under the receiver operating characteristic curve (time-dependent AUC) and the concordance index (c-index). Calibration was assessed using the time-dependent Brier score (time-dependent BS) and the integrated Brier score (IBS). Moreover, the beeswarm summary plot in SHAP (SHapley Additive exPlanations) was used to display the contribution of variables to the results. The 3280 patients were randomly split into a training cohort (n = 2624) and a validation cohort (n = 656). Nine variables including age at diagnosis, race, marital status, clinical T stage, prostate-specific antigen (PSA) level at diagnosis, Gleason Score (GS), number of positive lymph nodes, radical prostatectomy (RP), and radiotherapy (RT) were used to develop models. The mean time-dependent AUC for GBSA, RSF, and EST was 0.782 (95% confidence interval [CI] 0.779–0.783), 0.779 (95% CI 0.776–0.780), and 0.781 (95% CI 0.778–0.782), respectively, which were higher than the Cox regression model of 0.770 (95% CI 0.769–0.773). Additionally, all models demonstrated almost similar calibration, with low IBS. A web-based prediction tool was developed using the best-performing GBSA, which is accessible at https://pengzihexjtu-pca-n1.streamlit.app/. ML algorithms showed better performance compared with Cox regression and we developed a web-based tool, which may help to guide patient treatment and follow-up.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Second Affiliated Hospital of Xi’an Jiaotong University, Department of Urology, Xi’an, China (GRID:grid.452672.0) (ISNI:0000 0004 1757 5804); Xi’an Jiaotong University, Health Science Center, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243)
2 The First Affiliated Hospital of Xi’an Jiaotong University, Department of Urology, Xi’an, China (GRID:grid.452438.c) (ISNI:0000 0004 1760 8119); Xi’an Jiaotong University, Health Science Center, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243)
3 Xi’an Jiaotong University, Health Science Center, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243)
4 The Second Affiliated Hospital of Xi’an Jiaotong University, Department of Urology, Xi’an, China (GRID:grid.452672.0) (ISNI:0000 0004 1757 5804)