Abstract

Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.

Details

Title
2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments
Author
Jovanovic, Nemanja 1   VIAFID ORCID Logo  ; Gatkine, Pradip 1   VIAFID ORCID Logo  ; Anugu, Narsireddy 2   VIAFID ORCID Logo  ; Amezcua-Correa, Rodrigo 3 ; Ritoban Basu Thakur 4   VIAFID ORCID Logo  ; Beichman, Charles 5 ; Bender, Chad F 6   VIAFID ORCID Logo  ; Berger, Jean-Philippe 7   VIAFID ORCID Logo  ; Bigioli, Azzurra 8   VIAFID ORCID Logo  ; Bland-Hawthorn, Joss 9   VIAFID ORCID Logo  ; Bourdarot, Guillaume 10   VIAFID ORCID Logo  ; Bradford, Charles M 11   VIAFID ORCID Logo  ; Broeke, Ronald 12 ; Bryant, Julia 9   VIAFID ORCID Logo  ; Bundy, Kevin 13   VIAFID ORCID Logo  ; Cheriton, Ross 14   VIAFID ORCID Logo  ; Cvetojevic, Nick 15   VIAFID ORCID Logo  ; Diab, Momen 16   VIAFID ORCID Logo  ; Diddams, Scott A 17   VIAFID ORCID Logo  ; Dinkelaker, Aline N 18   VIAFID ORCID Logo  ; Duis, Jeroen 19   VIAFID ORCID Logo  ; Eikenberry, Stephen 3   VIAFID ORCID Logo  ; Ellis, Simon 20   VIAFID ORCID Logo  ; Endo, Akira 21   VIAFID ORCID Logo  ; Figer, Donald F 22   VIAFID ORCID Logo  ; Fitzgerald, Michael P 23   VIAFID ORCID Logo  ; Gris-Sanchez, Itandehui 24   VIAFID ORCID Logo  ; Gross, Simon 25   VIAFID ORCID Logo  ; Grossard, Ludovic 26   VIAFID ORCID Logo  ; Guyon, Olivier 27   VIAFID ORCID Logo  ; Haffert, Sebastiaan Y 6   VIAFID ORCID Logo  ; Halverson, Samuel 11   VIAFID ORCID Logo  ; Harris, Robert J 28 ; He, Jinping 29   VIAFID ORCID Logo  ; Herr, Tobias 30   VIAFID ORCID Logo  ; Hottinger, Philipp 31   VIAFID ORCID Logo  ; Huby, Elsa 32 ; Ireland, Michael 33   VIAFID ORCID Logo  ; Jenson-Clem, Rebecca 13 ; Jewell, Jeffrey 11 ; Jocou, Laurent 34   VIAFID ORCID Logo  ; Kraus, Stefan 35   VIAFID ORCID Logo  ; Labadie, Lucas 36   VIAFID ORCID Logo  ; Lacour, Sylvestre 32   VIAFID ORCID Logo  ; Laugier, Romain 8   VIAFID ORCID Logo  ; Ławniczuk, Katarzyna 12 ; Lin, Jonathan 23   VIAFID ORCID Logo  ; Leifer, Stephanie 37   VIAFID ORCID Logo  ; Leon-Saval, Sergio 38   VIAFID ORCID Logo  ; Martin, Guillermo 34   VIAFID ORCID Logo  ; Frantz Martinache 15 ; Marc-Antoine Martinod 8   VIAFID ORCID Logo  ; Mazin, Benjamin A 39   VIAFID ORCID Logo  ; Minardi, Stefano 40 ; Monnier, John D 41   VIAFID ORCID Logo  ; Moreira, Reinan 42 ; Mourard, Denis 15   VIAFID ORCID Logo  ; Abani Shankar Nayak 43   VIAFID ORCID Logo  ; Norris, Barnaby 9 ; Obrzud, Ewelina 44   VIAFID ORCID Logo  ; Perraut, Karine 34   VIAFID ORCID Logo  ; Reynaud, François 26   VIAFID ORCID Logo  ; Sallum, Steph 45   VIAFID ORCID Logo  ; Schiminovich, David 46   VIAFID ORCID Logo  ; Schwab, Christian 47   VIAFID ORCID Logo  ; Serbayn, Eugene 11 ; Soliman, Sherif 19   VIAFID ORCID Logo  ; Stoll, Andreas 18   VIAFID ORCID Logo  ; Tang, Liang 29 ; Tuthill, Peter 9   VIAFID ORCID Logo  ; Vahala, Kerry 37 ; Vasisht, Gautam 11   VIAFID ORCID Logo  ; Veilleux, Sylvain 48   VIAFID ORCID Logo  ; Walter, Alexander B 11   VIAFID ORCID Logo  ; Wollack, Edward J 49   VIAFID ORCID Logo  ; Yinzi Xin 1   VIAFID ORCID Logo  ; Yang, Zongyin 50   VIAFID ORCID Logo  ; Yerolatsitis, Stephanos 3   VIAFID ORCID Logo  ; Zhang, Yang 51   VIAFID ORCID Logo  ; Chang-Ling, Zou 52   VIAFID ORCID Logo 

 Department of Astronomy, California Institute of Technology , Pasadena, CA, United States of America 
 The CHARA Array of Georgia State University, Mount Wilson Observatory , Mount Wilson, Altadena, CA 91203, United States of America 
 CREOL, The College of Optics and Photonics, University of Central Florida , Orlando, FL, United States of America 
 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA, United States of America; Department of Physics, California Institute of Technology , Pasadena, CA, United States of America 
 IPAC/NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA, United States of America 
 Steward Observatory, University of Arizona , Tucson, AZ, United States of America 
 Univ. Grenoble Alpes, CNRS, IPAG , 38000 Grenoble, France 
 Institute of Astronomy, KU Leuven , Celestijnenlaan 200D, 3001 Leuven, Belgium 
 Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney , Sydney, Australia 
10  Max Planck Institute for Extraterrestrial Physics , Garching, Germany 
11  Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA, United States of America 
12  Bright Photonics BV , Eindhoven, The Netherlands 
13  Department of Astronomy and Astrophysics, University of California , Santa Cruz, CA, United States of America 
14  Advanced Electronics and Photonics Research Centre, National Research Council Canada , Ottawa, Canada 
15  Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange , Nice, France 
16  Dunlap Institute for Astronomy and Astrophysics, University of Toronto , Toronto, Canada 
17  Electrical, Computer and Energy Engineering and Department of Physics, University of Colorado , Boulder, CO, United States of America 
18  Leibniz Institute for Astrophysics Potsdam (AIP) , Potsdam, Germany 
19  PHIX Photonics Assembly , Enschede, The Netherlands 
20  Australian Astronomical Optics, Astrophysics and Space Technologies Research Centre, Macquarie University , North Ryde, NSW, Australia 
21  Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology , Delft, The Netherlands 
22  Center for Detectors, Rochester Institute of Technology , Rochester, NY, United States of America 
23  Department of Physics and Astronomy, University of California , Los Angeles, CA, United States of America 
24  ITEAM Research Institute, Universitat Politècnica de València , Valencia, Spain 
25  MQ Photonics Research Centre, School of Engineering, Macquarie University , North Ryde, NSW, Australia 
26  Limoges, CNRS, XLIM , UMR 7252, F-87000 Limoges, France 
27  Steward Observatory, University of Arizona , Tucson, AZ, United States of America; Subaru Telescope, National Astronomical Observatory of Japan, National Institute of Natural Sciences , Hilo, HI, United States of America; Astrobiology Center of NINS, Osawa , Mitaka, Tokyo, Japan; College of Optical Sciences, University of Arizona , Tucson, AZ, United States of America 
28  Max-Planck-Institute for Astronomy , Heidelberg, Germany; Department of Physics, Durham University , Durham, United Kingdom 
29  National Astronomical Observatories, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences , Nanjing, People’s Republic of China; Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences , Nanjing, People’s Republic of China 
30  Deutsches Elektronen-Synchrotron DESY, Germany and Universität Hamburg , Hamburg, Germany 
31  Landessternwarte, Zentrum für Astronomie der Universität Heidelberg , Heidelberg, Germany 
32  LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Cité , Meudon, France 
33  The Australian National University , Canberra, Australia 
34  Université Grenoble Alpes, CNRS, IPAG , 38000 Grenoble, France 
35  Department of Physics and Astronomy, University of Exeter , Exeter, United Kingdom 
36  I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77 , 50937 Cologne, Germany 
37  Department of Applied Physics, California Institute of Technology , Pasadena, CA, United States of America 
38  Sydney Astrophotonics Instrumentation Laboratory (SAIL), School of Physics, The University of Sydney , Sydney, Australia 
39  Department of Physics, University of California , Santa Barbara, CA, United States of America 
40  Ams-OSRAM , Jena, Germany 
41  Department of Astronomy, University of Michigan , Ann Arbor, MI, United States of America 
42  Ultra-Low Loss Technologies , Santa Barbara, CA, United States of America 
43  Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena , Jena, Germany 
44  Centre Suisse d’Electronique et de Microtechnique , Neuchâtel, Switzerland 
45  Department of Physics and Astronomy, University of California , Irvine, CA, United States of America 
46  Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University , New York, NY, United States of America 
47  School of Mathematical and Physical Sciences, Macquarie University , Sydney, NSW, Australia 
48  Department of Astronomy and Joint Space-Science Institute, University of Maryland , College Park, MD, United States of America 
49  NASA Goddard Space Flight Center , Greenbelt, MD, United States of America 
50  College of Information Science and Electronic Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University , Hangzhou, People’s Republic of China 
51  Electrical and Computer Engineering Department, University of Maryland , College Park, MD, United States of America 
52  CAS Key Laboratory of Quantum Information, University of Science and Technology of China , Hefei, Anhui, People’s Republic of China 
First page
042501
Publication year
2023
Publication date
Oct 2023
Publisher
IOP Publishing
e-ISSN
25157647
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2884250635
Copyright
© 2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.