It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Emotions are a crucial aspect of daily life and play a vital role in shaping human inter-actions. The purpose of this paper is to introduce a novel approach to recognize human emotions through the use of electroencephalogram (EEG) signals. To recognize these signals for emotion prediction, we employ a paradigm of Reservoir Computing (RC), called Echo State Network (ESN). In our analysis, we focus on two specific classes of emotion recognition: H/L Arousal and H/L Valence. We suggest using the Deep ESN model in conjunction with the Welch Power Spectral Density (Wlech PSD) method for emotion classification and feature extraction. Furthermore, we feed the selected features to a grouped ESN for recognizing emotions. Our approach is validated on the well-known DEAP benchmark, which includes the EEG data from 32 participants. The proposed model achieved 89.32% accuracy for H/L Arousal and 91.21% accuracy for H/L Valence on the DEAP dataset. The obtained results demonstrate the effectiveness of our approach, which yields good performance compared to existing models of emotion analysis based on EEG.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer