Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In today’s data-driven world, efficient and secure cross-institution information-sharing is an urgent challenge. Traditional information-sharing methods based on access controlling often suffer from issues such as privacy breaches and high communication complexity. To address this issue, this paper proposes a cross-institution information-sharing solution based on a consortium blockchain, in which it combines on-chain transaction consensus with off-chain institution storage, thereby facilitating collaboration among nodes from different institutions on the blockchain. To enhance the efficiency and security of transactions on the blockchain, we also introduce a dynamic and adaptive Practical Byzantine Fault Tolerance (DA-PBFT) consensus protocol, which permits nodes to dynamically join and exit the blockchain network, consequently improving network scalability. Through a reputation mechanism, we swiftly identify and remove faulty and malicious nodes, enhancing the trustworthiness of nodes in the information-sharing network based on consortium blockchain, thereby improving consensus efficiency. We have also employed encryption techniques to enhance the privacy and integrity of data during the process of cross-institution information sharing. A comprehensive analysis of the communication complexity in the information-sharing network confirms the effectiveness and security of our proposed solution. We offer a unique solution to improve the efficiency and security of cross-institution information-sharing while ensuring data integrity and privacy. By addressing the challenges of privacy breaches and high communication complexity in information sharing, we establish a foundation for secure cross-institution data exchange.

Details

Title
A Cross-Institution Information-Sharing Scheme Based on a Consortium Blockchain
Author
Tan, Bingbing 1   VIAFID ORCID Logo  ; Chen, Yanli 1 ; Zhou, Yonghui 1 ; Li, Shouqing 2 ; Dong, Zhicheng 3   VIAFID ORCID Logo 

 School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, China; [email protected] (B.T.); [email protected] (Y.Z.) 
 Key Laboratory of Flight Techniques and Flight Safety, CAAC, Guanghan 618307, China; [email protected] 
 School of Information Science and Technology, Tibet University, Lhasa 850000, China; [email protected] 
First page
4512
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888129498
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.