Content area

Abstract

Vehicle and crew scheduling is vital in public transit planning. Conventionally, the issues are handled sequentially as the vehicle scheduling problem (VSP) and crew scheduling problem (CSP). However, integrating these planning steps offers additional flexibility, resulting in improved efficiency compared with sequential planning. Given the ever-growing market share of electric buses, this paper introduces a new model for integrated electric VSP and CSP, called EVCSPM. This model employs the minimum cost flow formulations for electric VSP, set partitioning for CSP, and linking constraints. Due to the nonlinear integer property of EVCSPM, we propose a method that hybrids a matching-based heuristic and integer linear programming solver, GUROBI. The numerical results demonstrate the efficiency of our methodology, and the integrated model outperforms the sequential model in real-life scenarios.

Full text

Turn on search term navigation

Copyright © 2023 Yindong Shen and Yuanyuan Li. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.