It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
After any nuclear incident, the main concern for human well-being is the extent of radiation released beyond the site. This study simulated a similar scenario on three potential nuclear power plant sites in Malaysia, using the Fukushima Daiichi Nuclear Power Plant incident as a reference. The computer model Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) was used to simulate and track the movement of air parcels and the dispersion of radioactive emissions. HYSPLIT analyzed the dispersion profile of radioactive materials, revealing that in S1, S2, and S3, the maximum ground dose was 7.9 mSv, 28.0 mSv, and 7.6 mSv, respectively. The maximum activity deposited on the ground was 62 MBq, 210 MBq, and 14 MBq for S1, S2, and S3, respectively. The analysis of ground deposition indicated that S1 covered an estimated area of 1500 km2, S2 covered 3025 km2, and S3 had the largest coverage of approximately 4537 km2. Overall, this study demonstrates that the hypothetical accident would contaminate the vicinity of the three potential nuclear power plant (NPP) sites.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Jabatan Fizik, Fakulti Sains, Universiti Putra Malaysia , Selangor , Malaysia
2 Agensi Nuklear Malaysia (Nuklear Malaysia) , Selangor , Malaysia
3 Medical Imaging Department, KPJ Healthcare University , Negeri Sembilan , Malaysia