It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Inspired by biological materials, the self-shaping wood composites induced by relative humidity (RH) have been investigated over the last decade. In this study, a wood bilayer was fabricated by assembling two layers with perpendicular fiber orientation in a series of thickness ratios and initial moisture contents (iMC). The self-shaping response of the wood bilayer was explored as a function of its configuration, and the discrepancies between moisture adsorption and desorption processes were clarified. Higher iMC limited the evolution of curvature. During both the adsorption and desorption processes, a reversed bending response was observed, and there was a hysteretic bending behavior between them. Repeatable bending was achieved during the cyclic ad/desorption process, and a larger hysteresis loop was observed at a lower thickness ratio. Finite-element analysis showed that the maximum stress occurred at the interface between the active and passive layers, and larger thickness ratios had lower maximum stress. In addition, the bilayer composed of a 200 μm passive layer and a 400 μm active layer with 0.6% iMC was found to be the most sensitive to RH change. The results of this study elucidate the moisture-dependent bending response of wood bilayers and provide the possibility of precisely controlling the curvature of self-shaping wood composites in industrial applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, People’s Republic of China (GRID:grid.410625.4) (ISNI:0000 0001 2293 4910)
2 Research Institute of Wood Industry of Chinese Academy of Forestry, Beijing, People’s Republic of China (GRID:grid.509662.e)
3 Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, People’s Republic of China (GRID:grid.410625.4) (ISNI:0000 0001 2293 4910); Research Institute of Wood Industry of Chinese Academy of Forestry, Beijing, People’s Republic of China (GRID:grid.509662.e)