Full Text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of earth-abundant electrocatalysts (ECs) operating at high current densities in water splitting electrolyzers is pivotal for the widespread use of the current green hydrogen production plants. Transition metal dichalcogenides (TMDs) have emerged as promising alternatives to the most efficient noble metal ECs, leading to a wealth of research. Some strategies based on material nanostructuring and hybridization, introduction of defects and chemical/physical modifications appeared as universal approaches to provide catalytic properties to TMDs, regardless of the specific material. In this work, we show that even a theoretically poorly catalytic (and poorly studied) TMD, namely zirconium diselenide (ZrSe2), can act as an efficient EC for the hydrogen evolution reaction (HER) when exfoliated in the form of two-dimensional (2D) few-layer flakes. We critically show the difficulties of explaining the catalytic mechanisms of the resulting ECs in the presence of complex structural and chemical modifications, which are nevertheless evaluated extensively. By doing so, we also highlight the easiness of transforming 2D TMDs into effective HER-ECs. To strengthen our message in practical environments, we report ZrSe2-based acidic (proton exchange membrane [PEM]) and alkaline water electrolyzers operating at 400 mA cm–2 at a voltage of 1.88 and 1.92 V, respectively, thus competing with commercial technologies.

Details

Title
Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of “inert” ZrSe2 as catalyst for electrolyzers
Author
Najafi, Leyla 1 ; Bellani, Sebastiano 1 ; Zappia, Marilena I 1 ; Serri, Michele 2 ; Oropesa-Nuñez, Reinier 3 ; Bagheri, Ahmad 2 ; Beydaghi, Hossein 1 ; Brescia, Rosaria 4 ; Lea, Pasquale 5 ; Shinde, Dipak V 6 ; Zuo, Yong 6 ; Drago, Filippo 6 ; Mosina, Kseniia 7 ; Sofer, Zdeněk 7 ; Manna, Liberato 6 ; Bonaccorso, Francesco 1 

 BeDimensional S.p.A., Genova, Italy 
 Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy 
 Department of Material Science and Engineering, Uppsala University, Uppsala, Sweden 
 Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genova, Italy 
 Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova, Italy 
 NanoChemistry, Istituto Italiano di Tecnologia, Genova, Italy 
 Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic 
Pages
1069-1081
Section
RESEARCH ARTICLES
Publication year
2022
Publication date
Jun 2022
Publisher
John Wiley & Sons, Inc.
ISSN
26884011
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2890728391
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.