Abstract

Growing high-quality core-shell heterostructure nanowires is still challenging due to the lattice mismatch issue at the radial interface. Herein, a versatile strategy is exploited for the lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires by simply utilizing the surfactant and amorphous natures of chalcogenide semiconductors. Specifically, a variety of III-V/chalcogenide core-shell heterostructure nanowires are successfully constructed with controlled shell thicknesses, compositions, and smooth surfaces. Due to the conformal properties of obtained heterostructure nanowires, the wavelength-dependent bi-directional photoresponse and visible light-assisted infrared photodetection are realized in the type-I GaSb/GeS core-shell heterostructure nanowires. Also, the enhanced infrared photodetection is found in the type-II InGaAs/GeS core-shell heterostructure nanowires compared with the pristine InGaAs nanowires, in which both responsivity and detectivity are improved by more than 2 orders of magnitude. Evidently, this work paves the way for the lattice-mismatch-free construction of core-shell heterostructure nanowires by chemical vapor deposition for next-generation high-performance nanowire optoelectronics.

A versatility growth strategy is developed for the lattice-mismatch-free construction of core-shell heterostructure NWs by adopting the promising III-V semiconductors and amorphous chalcogenide semiconductors using simple chemical vapor deposition.

Details

Title
Lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires
Author
Liu, Fengjing 1 ; Zhuang, Xinming 1 ; Wang, Mingxu 1 ; Qi, Dongqing 2 ; Dong, Shengpan 3 ; Yip, SenPo 4 ; Yin, Yanxue 1 ; Zhang, Jie 1 ; Sa, Zixu 1 ; Song, Kepeng 2   VIAFID ORCID Logo  ; He, Longbing 3   VIAFID ORCID Logo  ; Tan, Yang 1 ; Meng, You 5 ; Ho, Johnny C. 6   VIAFID ORCID Logo  ; Liao, Lei 7   VIAFID ORCID Logo  ; Chen, Feng 1   VIAFID ORCID Logo  ; Yang, Zai-xing 1   VIAFID ORCID Logo 

 Shandong University, School of Physics, State Key Laboratory of Crystal Materials, Jinan, China (GRID:grid.27255.37) (ISNI:0000 0004 1761 1174) 
 Shandong University, School of Chemistry and Chemical Engineering, Jinan, China (GRID:grid.27255.37) (ISNI:0000 0004 1761 1174) 
 Southeast University, SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Nanjing, China (GRID:grid.263826.b) (ISNI:0000 0004 1761 0489) 
 Kyushu University, Institute for Materials Chemistry and Engineering, Fukuoka, Japan (GRID:grid.177174.3) (ISNI:0000 0001 2242 4849) 
 City University of Hong Kong, Department of Materials Science and Engineering, Hong Kong, China (GRID:grid.35030.35) (ISNI:0000 0004 1792 6846) 
 Kyushu University, Institute for Materials Chemistry and Engineering, Fukuoka, Japan (GRID:grid.177174.3) (ISNI:0000 0001 2242 4849); City University of Hong Kong, Department of Materials Science and Engineering, Hong Kong, China (GRID:grid.35030.35) (ISNI:0000 0004 1792 6846) 
 Hunan University, Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Changsha, China (GRID:grid.67293.39) 
Pages
7480
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2891383783
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.