It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Modeling techniques provide a straightforward means to dissect regional hydroclimate in response to changes in land use conditions. This study uses the Weather Research and Forecasting Model (WRF) and WRF-Hydrological modeling system (WRF-Hydro), driven by survey-based land use data in 1995 and 2015, to assess how central Taiwan’s hydroclimate responds to land use/cover change. We first run WRF-Hydro with observed rainfall as meteorological forcing to ensure reasonable runoff simulation, and then select ten cases under weak synoptic forcings in July and August in recent decades for the simulation under two land use conditions. The WRF-only simulation (i.e., uncoupled with WRF-Hydro) can reveal significant changes in heat fluxes and surface variables due to land use/cover change, including sensible and latent heat fluxes, 2-m temperature and specific humidity, and precipitation over the hotspots of urbanization or downwind areas. Coupling WRF with WRF-Hydro discloses varied runoff characteristics subject to land use/cover change: a general increase in average peak flow (~ 4.3%) and total runoff volume (~ 5.0%) accompanied by less definite time-to-peak flow, indicating a synergistic but sometimes competitive relationship between the pure hydrologic/hydraulic perspective and land–atmosphere interactions. By taking the difference between the uncoupled and coupled simulations, we verify that surface pressure, precipitation, and soil moisture are more sensitive to a better depiction of terrestrial hydrological processes; differences in the spatial variances of soil moisture can be as high as two orders of magnitude. Our findings highlight the importance of more comprehensive model physics in regional hydroclimate modeling.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 National Chung Hsing University, Taichung, Taiwan (GRID:grid.260542.7) (ISNI:0000 0004 0532 3749)
2 National Chung Hsing University, Taichung, Taiwan (GRID:grid.260542.7) (ISNI:0000 0004 0532 3749); AUO Corporation, Taichung, Taiwan (GRID:grid.260542.7)
3 National Chung Hsing University, Taichung, Taiwan (GRID:grid.260542.7) (ISNI:0000 0004 0532 3749); Ministry of Agriculture, Chianan Management Office, Irrigation Agency, Tainan, Taiwan (GRID:grid.260542.7)