Abstract
Vickers and Knoop testers are the most common tools used to measure the hardness of materials. However, a very small tilt in the sample surface even in the order of a fraction of a degree produces a noticeable asymmetry, which affects the accuracy of the measured hardness. In this investigation, a mathematical approach has been used to correct asymmetry in the Vickers and Knoop indentations in both metallic and ceramic materials. Measurements were taken for metals such as aluminium 6061(Al-6061), 304 stainless steel as well as various zirconia toughened ceramic materials including tetragonal zirconia doped with: 2.5 mol% Y2O3 (TZ2.5Y), 3 mol% Y2O3 (TZ3Y) and the composite containing 20 wt% alumina (TZ3Y20A), all prepared from commercial powders. A hardness tester equipped with Vickers and Knoop indenters was used for hardness and elastic modulus determination. Optical and scanning electron microscopes have been used to get the indentation micrographs. The method enabled accurate determination of both hardness and elastic modulus from corrected Vickers and Knoop indentations. The hardness and elastic modulus values obtained in this study are in good agreement with reported data for similar materials. The results obtained in this study have been successfully validated using the Zwick reference block. The developed method is readily applicable for the most widely used Vickers hardness machines for the correction of asymmetric indentations if existing, consequently leading to accurate determination of the hardness.
Article highlights
A simple correction method for asymmetrical Vickers and Knoop indentations was developed and applied on metallic and ceramic materials.
This method enabled precise determination of hardness and elastic modulus values.
The obtained hardness and elastic modulus values were consistent with those obtained by other techniques for similar materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Egyptian Atomic Energy Authority, Metallurgy Dept., NRC, Cairo, Egypt (GRID:grid.429648.5) (ISNI:0000 0000 9052 0245)





