It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This research considering constant shear friction is to explore the rotating extrusion of thin-walled round tube based on FEM simulation and slab method, and compares the results of both models to realize the variations and acceptance. The effective stress, the effective strain, the velocity field, the average thickness, the extrusion force, and the extrusion torque can be obtained from this study. It reveals the average thickness obtained from rotating extrusion is more uniform than that obtained from no rotating extrusion. The FEM optimization for extrusion force can be combined with Taguchi method, the L934 orthogonal table considers the four control factors which are outer diameter to thickness ratio, frictional factor, rotating angular velocity, half die angle, and three levels. The ranking of influence factors and the optimization combination can be obtained from FEM simulation optimization. Eventually the extrusion force between FEM simulation and slab method is compared under rotating angular velocity, 0.2 rad/s, the maximum error is 10.49 % and the minimum error is -0.29%; the average error is 4.16%, so the trend is in good agreement each other. Therefore, the both models can be verified.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology , Sanmin, Kaohsiung City, 807618 , Taiwan
2 Department of Mechanical Engineering/Institute of Mechatronic Engineering, Cheng Shiu University , Niaosong, Kaohsiung, 83347 , Taiwan
3 School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences , University of Wollongong, Northfields Ave. Wollongong, NSW 2522 Australia